Controlling Canards Using Ideas From MMO

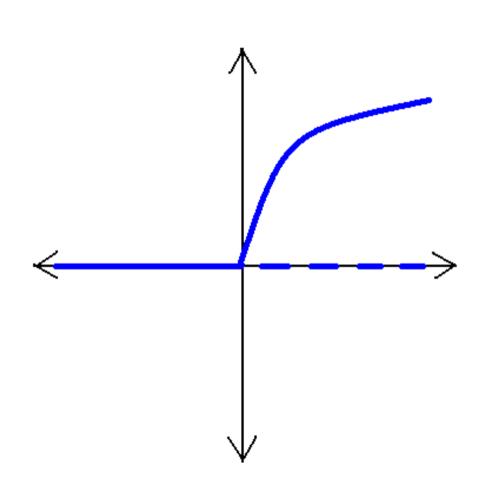
Joseph Durham Jeff Moehlis

Department of Mechanical Engineering University of California, Santa Barbara joey@engineering.ucsb.edu

Overview

- Motivation: Hopf bifurcation control
- Canards in FitzHugh-Nagumo
- Control Circle Method
- Results
 - Best canard produced
 - Chaotic trajectories
 - Noisy MMO

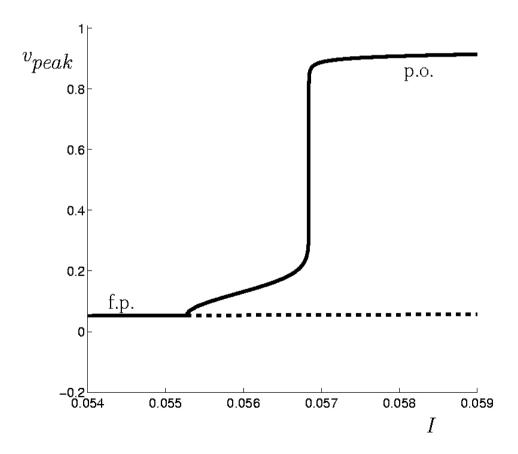
Motivation: Hopf Bifurcation Control



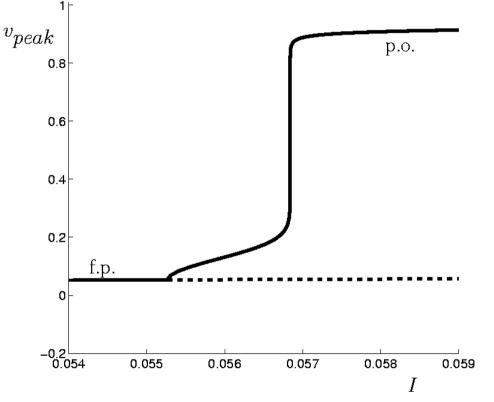
- System self-tunes a parameter to a Hopf bifurcation
 - Can be accomplished using feedback control (Moreau & Sontag, 2003)
- Systems operating at a Hopf bifurcation have:
 - Non-linear amplification
 - Noise rejection
- Crucial part of hearing

Objective:

Add feedback to a system with a canard explosion, so that the system self-tunes to the canard parameter value.



Why Canard Control?



- Canard:
 - Huge jump in p.o. size over tiny parameter change
- Could make a very sensitive sensor

FitzHugh-Nagumo Model

• Example system:

FHN equations for neuron dynamics

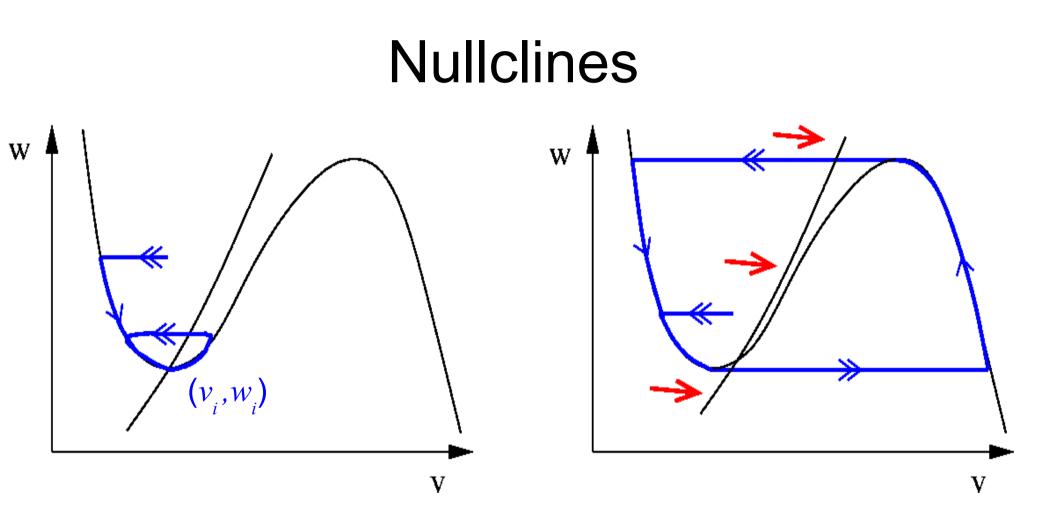
$$\dot{v} = -w - v(v-1)(v-a) + I \equiv f(v, w; I)$$

$$\dot{w} = \varepsilon (v - \gamma w) \equiv \varepsilon g(v, w)$$

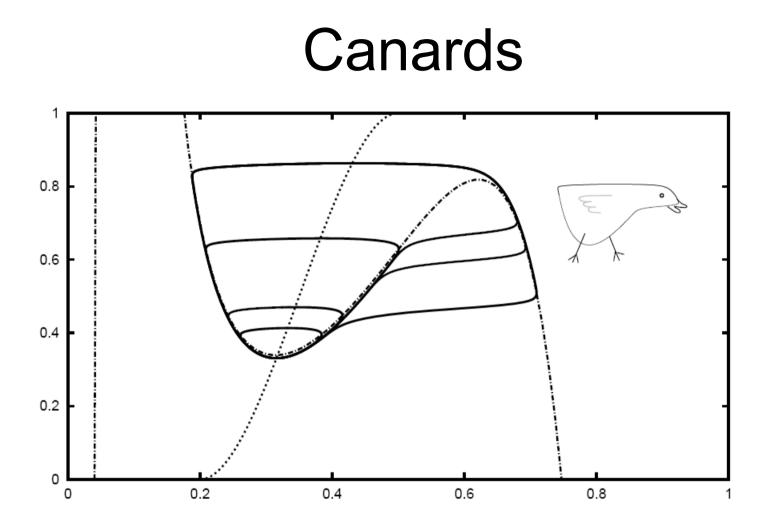
$$\gamma = 1, a = 0.1$$

$$\varepsilon = 0.008$$

- Fast-slow system
- Nullclines occur when one of the ODEs = 0
- Parameter *I* controls where these intersect



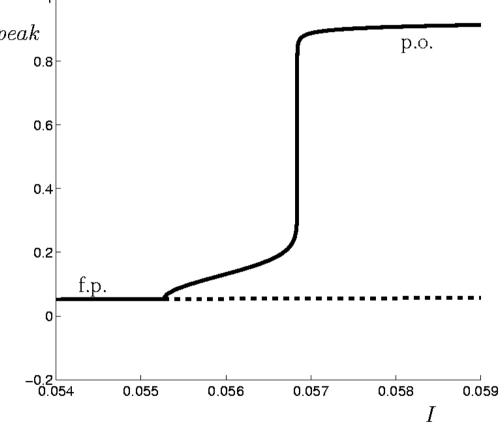
 As *I* increases, nullcline shift causes periodic orbit to leave the neighborhood of (v_i, w_i)

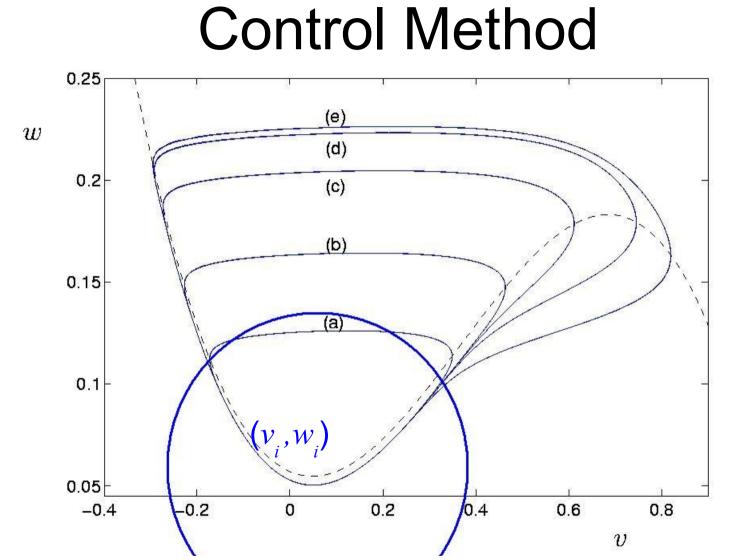


 Follow unstable manifold near middle branch of cubic v-nullcline

FHN Bifurcation Diagram

- Hopf bifurcation at V_{peak} I = 0.0553
- Stable p.o. grows dramatically around *I* = 0.0568
- Control should cause *I* to drift towards Canard point





• Control circle around local minimum of *v*nullcline (v_i, w_i)

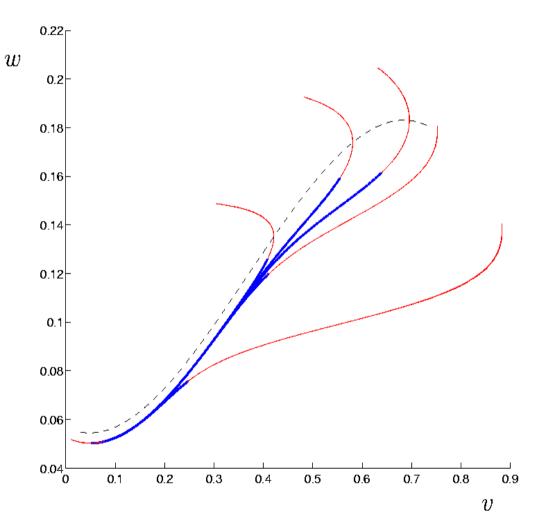
Control Equations

• Controlled FHN:

$$\dot{v} = -w - v(v-1)(v-a) + I$$
$$\dot{w} = \varepsilon (v - \gamma w)$$
$$\dot{I} = c(r_0 - r)$$

- Continuous, memoryless feedback control
 - *r* is the instantaneous distance from (v, w) to center of the control circle (v_i, w_i)
 - *c* sets control strength, r_0 sets circle radius

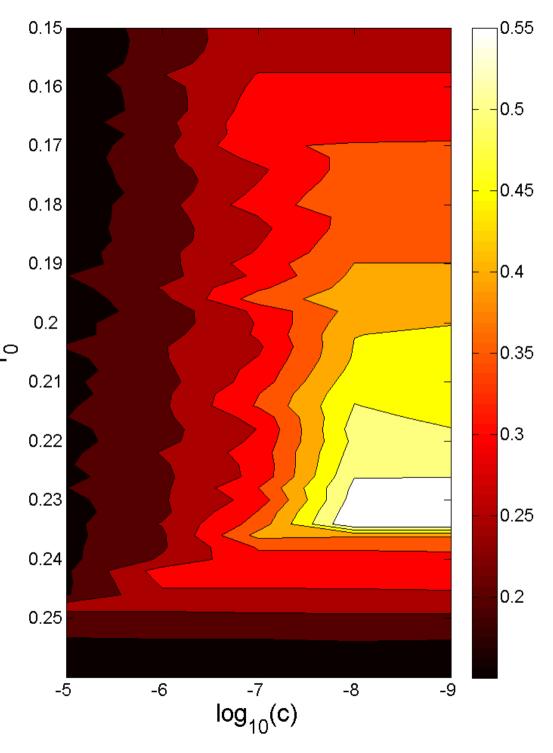
Measure Success

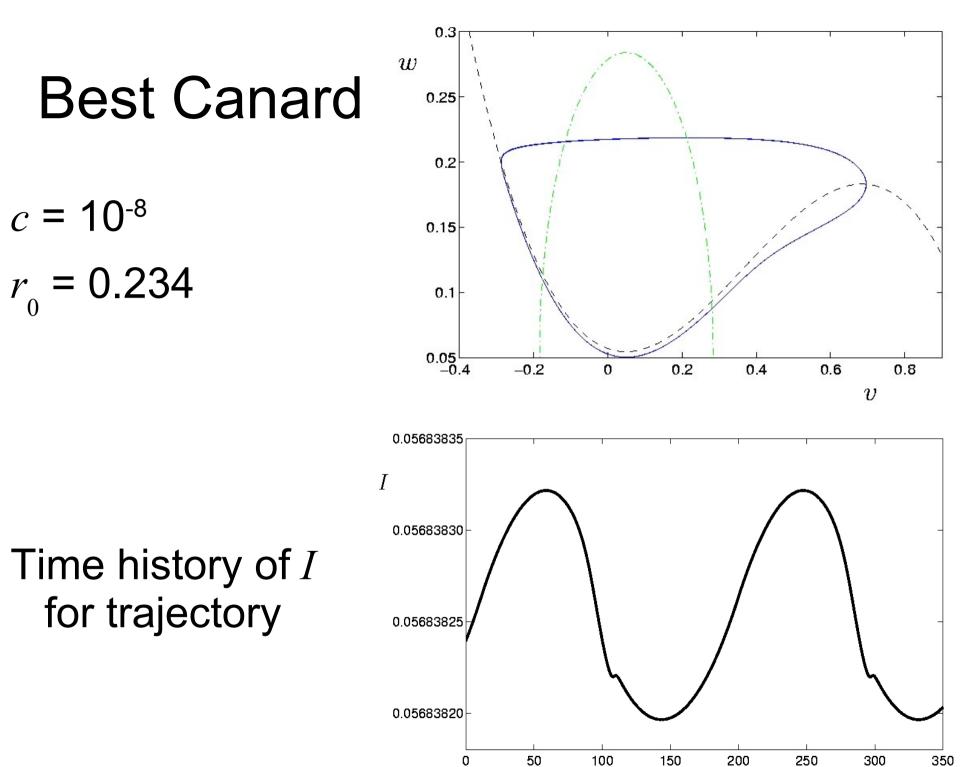


- How long does trajectory stay near unstable manifold
 - Manifold difficult to locate
 - But must remain close to *v*-nullcline
- Compare slope of trajectory and nullcline

2D Contour

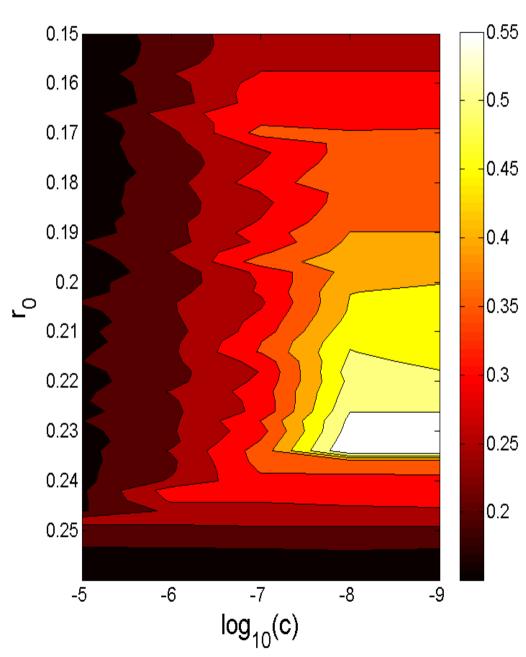
- Study of canard size over *c*, *r*₀
- Contours show averaged arclength _
- Need $c = 10^{-8}$ to get full canard
- r₀ = 0.235 produces
 best result





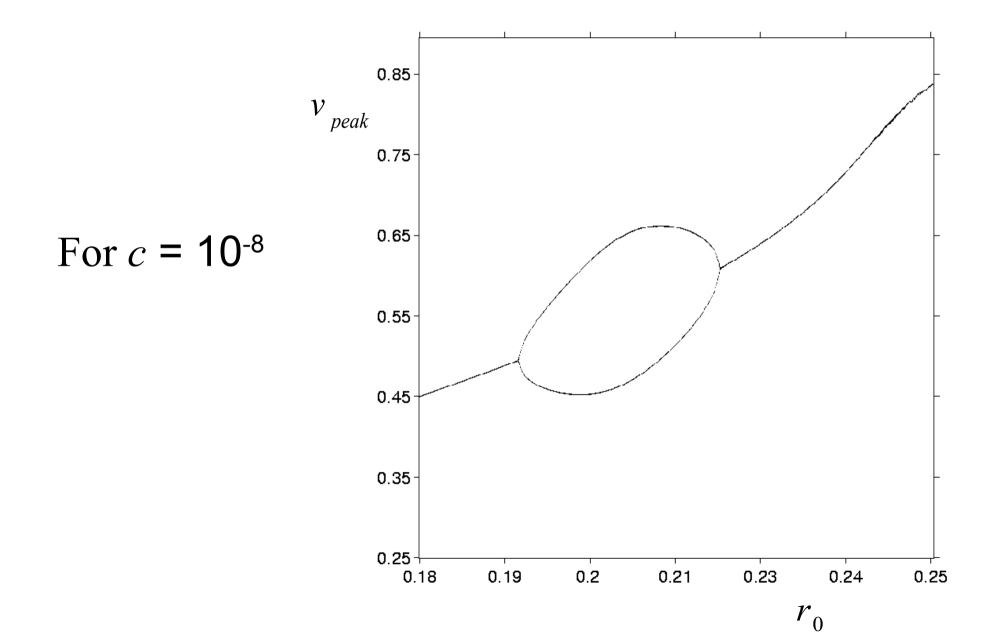
t

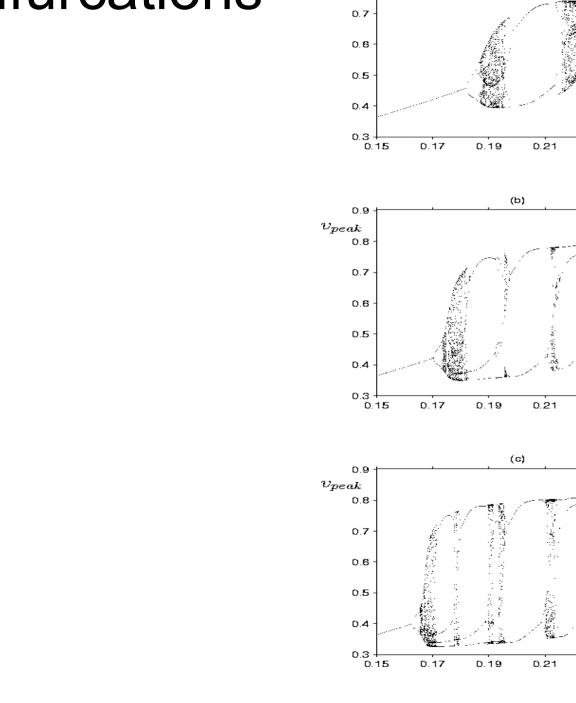
Positioning of the control circle



- Control method is fairly robust to displacements of the control circle
- Exact results change, but general picture is identical

Bifurcations as r_0 changes





0.9 v_{peak}

0.8

(a)

0.23

0.23 r₀

0.23

 r_0

0.25

0.25

 r_0

0.25

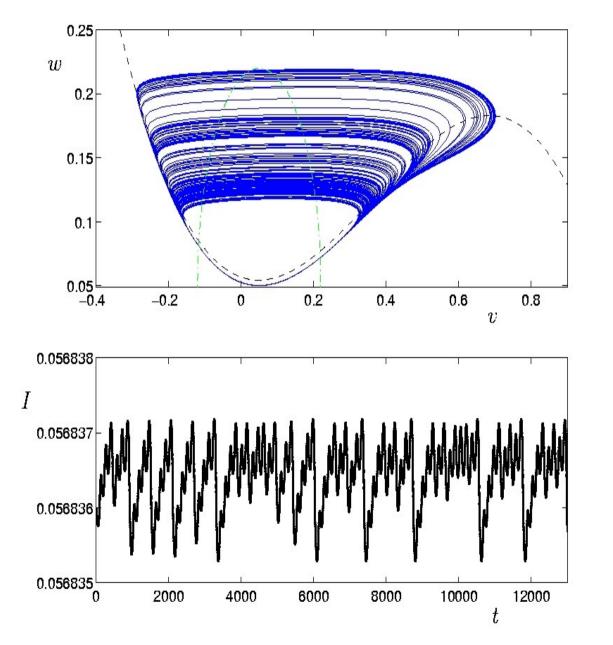
More Bifurcations

a) *c* = 2·10⁻⁸

b) $c = 5.10^{-8}$

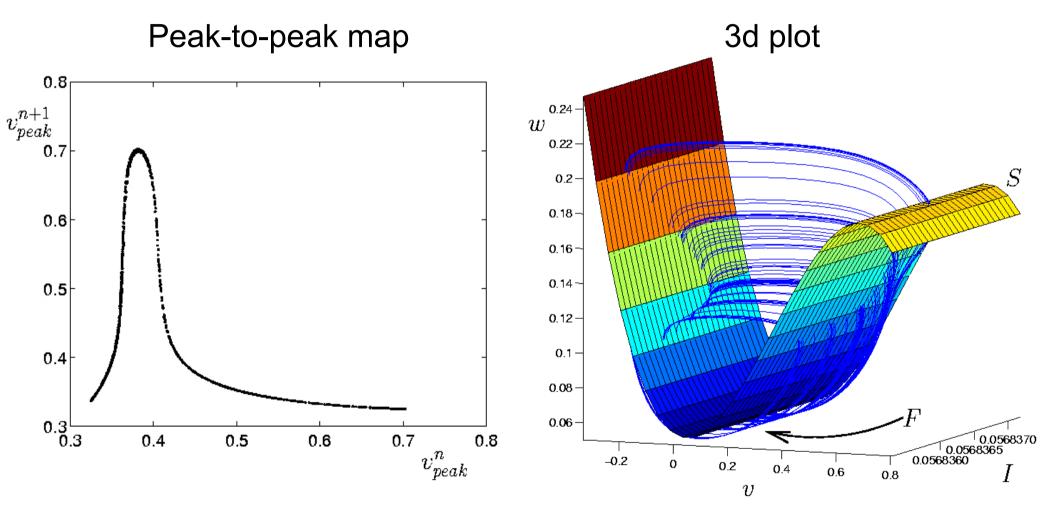
c) *c* = 10⁻⁷

Chaos!



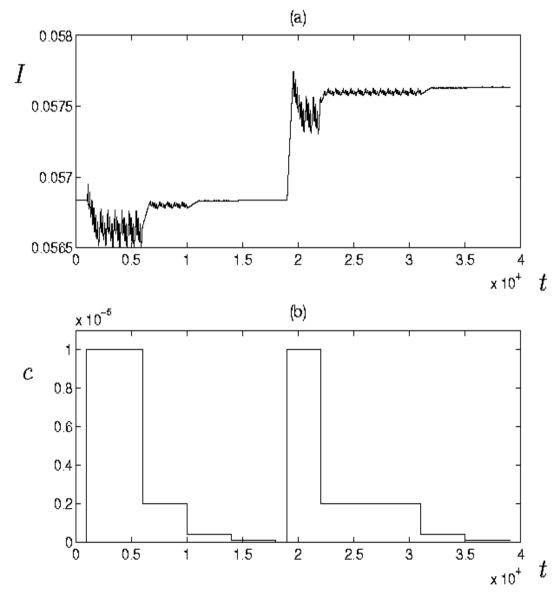
 $c = 10^{-7}$ $r_0 = 0.17$

More views of chaos

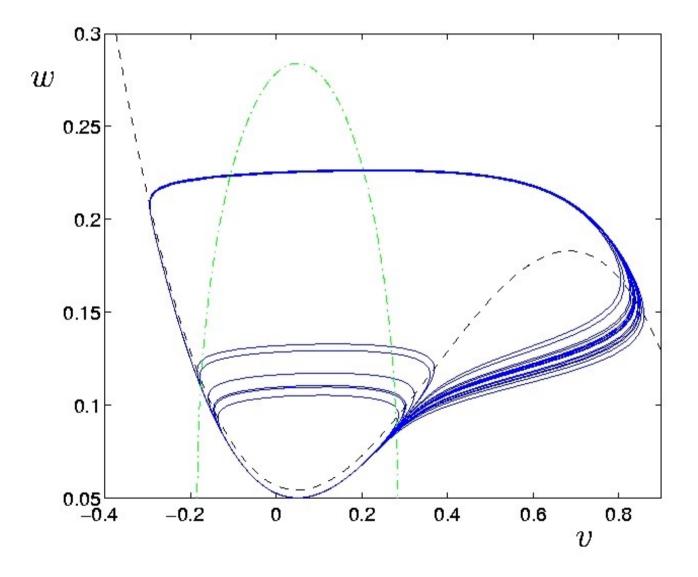


Perturbations

- Control method is robust to large but infrequent changes in system properties
- Can locate new
 Canard point



Continuous White Noise



Conclusions

- Can produce maximal canard trajectories
- If improperly tuned:
 - MMO
 - Chaotic MMO
- In presence of noise:
 Noisy MMO

